Optimasi flotasi bijih nikel laterit menggunakan depresan pati singkong karet (Manihot glaziovii) dengan variasi konsentrasi pati dan pH terhadap recovery nikel

Optimization of Lateritic Nickel Ore Flotation Using Rubber Cassava (Manihot gla-ziovii) Starch Depressant with Variations in Starch Concentration and pH on Nickel Re-covery

  • Cornelia Kesia Rantang Universitas Kristen Indonesia Paulus
  • Mirna Almi Lestari Universitas Kristen Indonesia Paulus
  • Putri Yoretno Y Universitas Kristen Indonesia Paulus
  • Putri Caludia Rony Universitas Kristen Indonesia Paulus
  • Ruberto Imanuel Tikupadang Universitas Kristen Indonesia Paulus
  • Rosalia Sira Sarungallo Universitas Kristen Indonesia Paulus
Keywords: lateritic nickel, flotation, cassava starch depressant, concentrate, tailing

Abstract

ABSTRACT: This research aims to characterize the chemical composition of laterite nickel ore and analyze the effect of variations in the mass of cassava rubber starch depressant (Manihot glaziovii) and the pH of the flotation solution on nickel recovery and the content of gangue minerals (Fe2O3 and SiO2) in the flotation process. The laterite nickel ore used was obtained from Southeast Sulawesi. The research was conducted experimentally in the laboratory with pH variations of 5, 7, and 9 and starch depressant masses of 0, 0.1, 0.3, and 0.5 g. The collector used was sodium oleate, and pine oil was used as a frother. The results showed that the laterite nickel ore used as raw material has typical characteristics of laterite ore with a low Ni content and high gangue content. Variations in the mass of cassava rubber starch depressant and pH affected nickel recovery and the selectivity of separation toward gangue minerals. Under acidic conditions (pH 5), increasing the starch mass up to 0.3 g decreased nickel recovery from 58.26% to 36.75%. At neutral pH (pH 7), a recovery of 69.62% was obtained, while at basic pH (pH 9) and a starch mass of 0.5 g, the highest nickel recovery of 76.61% was achieved. However, the use of cassava rubber starch has not yet shown optimal selectivity in reducing Fe2O3 and SiO2 contents. Research using cassava rubber starch has potential as a natural, economical, and environmentally friendly depressant to improve nickel recovery in the flotation process of laterite nickel ore, although further optimization is still needed to improve selectivity toward gangue minerals.

References

Bahfie, F., Manaf, A., Astuti, W., Nurjaman, F., & Herlina, U. (2021). Tinjauan teknologi proses ekstraksi bijih nikel laterit. Jurnal Teknologi Mineral dan Batubara. 17(3): 135–152. https://doi.org/10.30556/jtmb.vol17.no3.2021.1156.

Basuhi, R., Bhuwalka, K., Moore, E. A., Diersen, I., Malik, R. H., Young, E., Billy, R. G., Stoner, R., Ceder, G., Müller, D. B., Roth, R., & Olivetti, E. A. (2024). Clean energy demand must secure sustainable nickel supply. Joule. 8(11): 2960–2973. https://doi.org/https://doi.org/10.1016/j.joule.2024.10.008.

Butt, C. R. M., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements. 9(2): 123–128. https://doi.org/10.2113/gselements.9.2.123.

Dilshara, P., Abeysinghe, B., Premasiri, R., Dushyantha, N., Ratnayake, N., Senarath, S., Sandaruwan Ratnayake, A., & Batapola, N. (2024). The role of nickel (Ni) as a critical metal in clean energy transition: applications, global distribution and occurrences, production-demand and phytomining. Journal of Asian Earth Sciences. 259: 1–13. https://doi.org/10.1016/j.jseaes.2023.105912.

Fan, Q., Yuan, S., Wen, J., & He, J. (2024). Review on comprehensive utilization of nickel laterite ore. Minerals Engineering. 218: 1–21. https://doi.org/https://doi.org/10.1016/j.mineng.2024.109044.

Farrokhpay, S., & Filippov, L. (2016). Challenges in processing nickel laterite ores by flotation. International Journal of Mineral Processing. 151: 59–67. https://doi.org/10.1016/j.minpro.2016.04.007.

Farrokhpay, S., Fornasiero, D., & Filippov, L. (2018). Upgrading nickel in laterite ores by flotation. Minerals Engineering. 121: 100–106. https://doi.org/https://doi.org/10.1016/j.mineng.2018.02.021.

Fletcher, B., Chimonyo, W., & Peng, Y. (2021). The Potential of Modified Starches as Mineral Flotation Depressants. Mining, Metallurgy and Exploration. 38(2): 739–750. https://doi.org/10.1007/s42461-021-00379-x.

Janwong, A. (2012). The Agglomeration Of Nickel Laterite Ore. The University of Utah. Available at: http://content.lib.utah.edu/utils/getfile/collection/etd3/id/2055/filename/2052.pdf.

Li, B., Liu, D., Shi, Q., Zhang, G., & Zheng, H. (2023). Application of hydroxyethylidene diphosphonic acid as a depressant for efficient pyrite separation from serpentine: a performance and mechanistic study. Minerals Engineering. 204: 1–10. https://doi.org/10.1016/j.mineng.2023.108381.

Li, K., Zhang, H., Peng, T., Liu, C., & Yang, S. (2022). Influences of starch depressant with the various molecular structure on the interactions between hematite particles and flotation bubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 652(June): 129814. https://doi.org/10.1016/j.colsurfa.2022.129814.

Marins, T. F., Rodrigues, O. M. S., Reis, É. L., & Beltrão, J. G. (2020). Utilising starches from sugarcane and cassava residues as hematite depressants. Minerals Engineering. 145: 1–5. https://doi.org/10.1016/j.mineng.2019.106090.

Michel, T. (2024). The Prospects Of Indonesia’s Nickel Boom Amidst A Systemic Challenge From CoalIfri Papers. . Available at: https://www.ifri.org/sites/default/files/atoms/files/ifri_michel_indonesia_nickel_boom_2024.pdf.

Moore, L. R., Macy, P., Casagrande, R., & Sessoms, J. (2015). Magnesium oxide suppression during nickel flotation. Mining, Metallurgy & Exploration. 32(3): 170–175. https://doi.org/10.1007/BF03402285.

Neisiani, A. A., Saneie, R., Mohammadzadeh, A., Wonyen, D. G. and Chehreh Chelgani, S. (2023). Polysaccharides-based pyrite depressants for green flotation separation: An overview. International Journal of Mining Science and Technology. 33(10): 1229–1241. https://doi.org/10.1016/j.ijmst.2023.09.002.

Oulkhir, A., Lyamlouli, K., Danouche, M., Ouazzani, J., & Benhida, R. (2023). A critical review on natural surfactants and their potential for sustainable mineral flotation. Reviews in Environmental Science and Biotechnology. 22(1): 105–131. https://doi.org/10.1007/s11157-022-09639-8.

Quast, K., Connor, J. N., Skinner, W., Robinson, D. J., & Addai-Mensah, J. (2015). Preconcentration strategies in the processing of nickel laterite ores Part 1: Literature review. Minerals Engineering. 79: 261–268. https://doi.org/10.1016/j.mineng.2015.03.017.

Quast, K., Otsuki, A., Fornasiero, D., Robinson, D. J., & Addai-Mensah, J. (2015). Preconcentration strategies in the processing of nickel laterite ores part 3: Flotation testing. Minerals Engineering. 79: 279–286. https://doi.org/https://doi.org/10.1016/j.mineng.2015.03.018.

Rath, S. S., & Sahoo, H. (2020). A Review on the Application of Starch as Depressant in Iron Ore Flotation. Mineral Processing and Extractive Metallurgy Review. 43(1): 122–135. https://doi.org/10.1080/08827508.2020.1843028.

Su, C., Geng, Y., van Ewijk, S., Borrion, A., & Zhang, C. (2025). Uncovering the evolution of the global Nickel cycle and trade networks. Resources, Conservation and Recycling. 215: 108164. https://doi.org/https://doi.org/10.1016/j.resconrec.2025.108164.

Supriyatna, Y. I., Sihotang, I. H., & Sudibyo. (2019). Preliminary study of smelting of Indonesian Nickel Laterite Ore using an Electric Arc Furnace. Materials Today: Proceedings. 13: 127–131. https://doi.org/10.1016/j.matpr.2019.03.201.

Taner, H. A., & Onen, V. (2024). Environmentally friendly alternative depressants in chalcopyrite flotation. Separation Science and Technology. 59(2): 257–267. https://doi.org/10.1080/01496395.2024.2315617.

USGS. (2023). Cement Statistics and Information. U.S. Geological Survey. 53(9): 1689–1699. Available at: https://www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-information%0Ahttps://www.usgs.gov/centers/nmic/cement-statistics-and-information.

Wang, Q., Zhang, H., Xu, Y., Bao, S., Liu, C., & Yang, S. (2023). The molecular structure effects of starches and starch phosphates in the reverse flotation of quartz from hematite. Carbohydrate Polymers. 303(October 2022): 120484. https://doi.org/10.1016/j.carbpol.2022.120484.

Wani, O. B. (2023). Enhanced Beneficiation Of Ultramafic Nickel Ores Using Novel Reagents. University of Toronto.

Wani, O. B., Khan, S., Shoaib, M., da Costa Gonçalves, C., Chen, Z., Zeng, H., & Bobicki, E. R. (2024). Processing of low-grade ultramafic nickel ores: A critical review. Minerals Engineering. 218: 108976. https://doi.org/https://doi.org/10.1016/j.mineng.2024.108976.

Wei, B., Li, J., Cao, Z., Ma, S., & Zhang, Y. (2024). The inhibition mechanism of esterified starch on flotation separation of fluorite and calcite. Physicochemical Problems of Mineral Processing. 60(4): 1–12. https://doi.org/10.37190/ppmp/190698.

Xing, Y., Gui, X., Karakas, F., & Cao, Y. (2017). Role of collectors and depressants in mineral flotation: A theoretical analysis based on extended DLVO theory. Minerals. 7(11): 1–14. https://doi.org/10.3390/min7110223.

Yang, S., Xu, Y., Kang, H., Li, K., & Li, C. (2023). Investigation into starch adsorption on hematite and quartz in flotation: Role of starch molecular structure. Applied Surface Science. 623: 157064. https://doi.org/10.1016/j.apsusc.2023.157064.

Yin, F., Zhang, C., Yu, Y., Lv, C., Gao, Z., Lu, B., Su, X., Luo, C., Peng, X., McFadzean, B., & Cao, J. (2024). Review on the Challenges of Magnesium Removal in Nickel Sulfide Ore Flotation and Advances in Serpentinite Depressor. Minerals. 14(10): 1–20. https://doi.org/10.3390/min14100965.

Yu, Y., Ma, L., Cao, M., & Liu, Q. (2017). Slime coatings in froth flotation: A review. Minerals Engineering. 114: 26–36. https://doi.org/https://doi.org/10.1016/j.mineng.2017.09.002.

Zeng, G., Chen, W., Liu, S., & Liu, G. (2023). New insights into the aggregation and disaggregation between serpentine and pyrite in the xanthate flotation system. Journal of Colloid and Interface Science. 633: 243–253. https://doi.org/https://doi.org/10.1016/j.jcis.2022.11.123.

Zeng, H., Sun, W., Luo, Y., & Wang, L. (2025). Effect of different natural starches on strengthening flotation separation of quartz and feldspar under alkaline conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 726: 137930. https://doi.org/https://doi.org/10.1016/j.colsurfa.2025.137930.

Zhang, C., Tan, Y., Yin, F., Zhao, J., Gao, Z., Sun, W., McFadzean, B., & Cao, J. (2024). Utilization of phosphorylated starch as a selective depressant for serpentine in the flotation of nickel sulfide ore. Minerals Engineering. 217: 108906. https://doi.org/https://doi.org/10.1016/j.mineng.2024.108906.

Zhu, D. Q., Cui, Y., Vining, K., Hapugoda, S., Douglas, J., Pan, J., & Zheng, G. L. (2012). Upgrading low nickel content laterite ores using selective reduction followed by magnetic separation. International Journal of Mineral Processing. 106–109: 1–7. https://doi.org/https://doi.org/10.1016/j.minpro.2012.01.003.

Published
2025-10-30
How to Cite
Rantang, C. K., Almi Lestari, M., Yoretno Y, P., Caludia Rony, P., Imanuel Tikupadang, R., & Sira Sarungallo, R. (2025). Optimasi flotasi bijih nikel laterit menggunakan depresan pati singkong karet (Manihot glaziovii) dengan variasi konsentrasi pati dan pH terhadap recovery nikel. Cassowary, 8(4), 104-114. https://doi.org/10.30862/casssowary.cs.v8.i4.503
Section
Articles