Optimasi komposisi briket ramah lingkungan dari limbah batubara sub-bituminus dan karbon rumput laut untuk mengurangi emisi
Optimizing the composition of eco-friendly briquettes from sub-bituminous coal waste and Gracilaria seaweed carbon for emission reduction

Abstract
ABSTRACT: This study investigates the development of environmentally friendly briquettes as a sustainable alternative fuel. Production involved utilizing sub-bituminous coal waste and carbon derived from the carbonization of seaweed. The primary objective of this research was to optimize the briquette composition to achieve optimal combustion performance, with a focus on reducing the emissions of harmful combustion byproducts, such as SOx (sulfur oxides), NOx (nitrogen oxides), COx (carbon oxides), and particulate matter. The results indicate that briquettes with a 1:1 ratio of coal to seaweed carbon, carbonized at 300°C (sample 3A1), demonstrate potential as an alternative fuel. The 3A1 briquettes exhibited a calorific value of 4422 cal/g, with SOx and NOx emissions that were 11.11% and 25.00% lower compared to pure coal briquettes. This reduction is attributed to the lower sulfur and nitrogen content in the seaweed, as well as the improved carbon structure stability resulting from the carbonization process at 300°C. The utilization of coal waste and seaweed in the form of briquettes represents a viable approach to mitigating environmental impacts and contributes to the development of clean and sustainable energy.
References
IPCC, I. P. on C. C. (2019). Covariance Structure Analysis Of Health-Related Indicators In Home-Dwelling Elderly, Focusing On Subjective Health Perception. Pertama. Edited by IP on CC (IPCC). Geneva, Switzerland. Intergovernmental Panel on Climate Change (IPCC).
Amrullah, A., Syarief, A., & Saifudin, M. (2020). Combustion Behavior of Fuel Briquettes Made from Ulin Wood and Gelam Wood Residues. International Journal of Engineering, Transactions B: Applications. 33(11): 2365–2371. https://doi.org/10.5829/ije.2020.33.11b.27.
ASTM D3173 − 11. (2011). Standard Test Method For Moisture In The Analysis Sample Of Coal And Coke.ASTM International , West Conshohocken, PA. . https://doi.org/10.1520/D3173-11.2.
ASTMD3174−12. (2018). Standard Test Method For Ash In The Analysis Sample Of Coal And Coke From CoalASTM International , West Conshohocken, PA. . https://doi.org/10.1520/D3174-12.10.1520/D3174-12R18.2.
ASTMD3175–11. (2011). Standard Test Method For Volatile Matter In The Analysis Sample Of Coal And CokeWest Conshohocken, PA: ASTM International. . https://doi.org/10.1520/C1709-18.
ASTMD5865−12. (2012). Standard Test Method For Gross Calorific Value Of Coal And CokeASTM International , West Conshohocken, PA. . https://doi.org/10.1520/C1709-18.
Fan, Y., Xia, W., & Zhang, L. (2023). The Change of Global Temperature Affected by Global Economy. Highlights in Science, Engineering and Technology. 48:17–36. https://doi.org/10.54097/hset. v48i.8228.
Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters. 18(6):2069–2094. https://doi.org/10.1007/ s10311-020-01059-w.
Gan, Q., Xu, J., Peng, S., Yan, F., Wang, R., & Cai, G. (2021). Effect of heating on the molecular carbon structure and the evolution of mechanical properties of briquette coal. Energy. 237(121548): 1–13. https://doi.org/10.1016/j.energy.2021. 121548.
Hanak, D. P. (2022). Environmental life-cycle assessment of waste-coal pellets production. Clean Energy. 6(1): 765–778. https://doi.org/10.1093/ce/zkab050.
Hudaya, G. K., & Madiutomo, N. (2019). The availability of Indonesian coal to meet the 2050 demand. Indonesian Mining Journal. 22(2): 107–128. https://doi.org/ 10.30556/imj.vol22.no2.2019.689.
Hung, C. M., Huang, C. P., Cheng, J. W., Chen, C. W., & Dong, C. Di. (2021). Production and characterization of a high value-added seaweed-derived biochar: Optimization of pyrolysis conditions and evaluation for sediment treatment. Journal of Analytical and Applied Pyrolysis. 155(105071): 1–9. https:// doi.org/10.1016/j.jaap.2021.105071.
Jia, X., Ding, Y., Zhao, Y., Huo, X., Liu, S., & Yun, F. (2022). Investigation of the Pollutant Emission Characteristics of Blends of Biomass and Coal Gangue in a Fluidized Bed. Thermal Science. 26(5): 4333–4343. https://doi.org/10.2298/TSCI211030042J.
Khan, N., Sudhakar, K., & Mamat, R. (2022). Thermogravimetric Analysis of Marine Macroalgae Waste Biomass as Bio-Renewable Fuel. Journal of Chemistry. 2022:1–9. https://doi.org/10.1155/2022/ 6417326.
Li, Y. (2023). The impact of global warming on polar marine life. Theoretical and Natural Science. 20(1): 251–256. https://doi.org/10.54254/2753-8818/20/20230782.
Liu, Z., Adewuyi, Y. G., Shi, S., Chen, H., Li, Y., Liu, D., & Liu, Y. (2019). Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon. Chemical Engineering Journal. 366: 41–49. https://doi.org/10.1016/j.cej.2019.02.025.
Mohd Hasan, M. H., Bachmann, R. T., Loh, S. K., Manroshan, S., & Ong, S. K. (2019). Effect of Pyrolysis Temperature and Time on Properties of Palm Kernel Shell-Based Biochar. IOP Conference Series: Materials Science and Engineering. 548(1):1–11. https://doi.org/10.1088/ 1757-899X/548/1/012020.
Moloeznik Paniagua, D., Krenz, L. M. M., Libra, J. A., Korf, N., & Rotter, V. S. (2024). Towards a high-quality fertilizer based on algae residues treated via hydrothermal carbonization. Trends on how process parameters influence inorganics. Biochar. 6(1): 1–25. https://doi.org/10.1007/s42773-024-00357-8.
Mulyono, A. T. (2021). Dynamics of Electric Energy Policy the Coal Sector in Indonesia: Anomaly or Exception?. NOMOI Law Review. 2(1). https://doi.org/10.30596/nomoi.v2i1. 6476.
Najib, S. S. A. M., Ganesan, M. A., Rashid, M. N., Sokri, M. N. M., Zaini, N., & Nasri, N. (2021). Effect of Temperature on Calorific Value of Pyrolyzed Empty Fruit Bunch (Efb) Derived Biochar. Journal of Earth and Environmental Sciences Research. 3(1): 1–6. https:// doi.org/10.47363/jeesr/2021(3)138.
Nyoni, B., Duma, S., Shabangu, S. V., & Hlangothi, S. P. (2020). Comparison of the Slow Pyrolysis Behavior and Kinetics of Coal, Wood and Algae at High Heating Rates. Natural Resources Research. 29(6):3943–3955. https://doi.org/10.1007/ s11053-020-09687-3.
Olsson, J., Toth, G. B., & Albers, E. (2020). Biochemical composition of red, green and brown seaweeds on the Swedish west coast. Journal of Applied Phycology. 32(5):3305–3317. https://doi.org/10.1007/ s10811-020-02145-w.
Ordonez, J. A., Jakob, M., Steckel, J. C., & Fünfgeld, A. (2021). Coal, power and coal-powered politics in Indonesia. Environmental Science and Policy. 123(May):44–57. https://doi.org/10.1016/ j.envsci.2021.05.007.
Patel, N., Acharya, B., & Basu, P. (2021). Hydrothermal carbonization (Htc) of seaweed (macroalgae) for producing hydrochar. Energies. 14(7): 1–16. https://doi.org/10.3390/en14071805.
Qi, J., & Wu, J. (2023). Effects of Bio-Coal Briquette for Residential Combustion on Brown Carbon Emission Reduction. Processes. 11(6): 1–14. https://doi.org/10.3390/pr11061834.
Rahman, R., Widodo, S., Azikin, B., & Tahir, D. (2019). Chemical composition and physical characteristics of coal and mangrove wood as alternative fuel. Journal of Physics: Conference Series. 1341(5):1–10. https://doi.org/10.1088/ 1742-6596/1341/5/052008.
Riaza, J., Mason, P., Jones, J. M., Gibbins, J., & Chalmers, H. (2019). High temperature volatile yield and nitrogen partitioning during pyrolysis of coal and biomass fuels. Fuel. 248: 215–220. https://doi.org/10.1016/j.fuel.2019.03.075.
Sun, J., Shen, Z., Zhang, Y., Zhang, Q., Wang, F., Wang, T., Chang, X., Lei, Y., Xu, H., Cao, J., Zhang, N., Liu, S., & Li, X. (2019). Effects of biomass briquetting and carbonization on PM2.5 emission from residential burning in Guanzhong Plain, China. Fuel. 244(February): 379–387.https://doi.org/10.1016/j.fuel.2019.02.031.
Waheed, M. A., & Akogun, O. A. (2021). Quality enhancement of fuel briquette from cornhusk and cassava peel blends for co-firing in coal thermal plant. International Journal of Energy Research. 45(2): 1867–1878. https://doi.org/10.1002/er.5865.
Wu, Z., Li, Y., Zhang, B., Yang, W., & Yang, B. (2019). Co-pyrolysis behavior of microalgae biomass and low-rank coal: Kinetic analysis of the main volatile products. Bioresource Technology. 271(September 2018): 202–209. https://doi.org/10.1016/j.biortech.2018.09.076.
Yang, Y., Zhang, M., Alalawy, A. I., Almutairi, F. M., Al-Duais, M. A., Wang, J., & Salama, E. S. (2021). Identification and characterization of marine seaweeds for biocompounds production. Environmental Technology and Innovation. 24: 101848. https://doi.org/10.1016/j.eti.2021.101848.
Yong, W. T. L., Thien, V. Y., Rupert, R., & Rodrigues, K. F. (2022). Seaweed: A potential climate change solution. Renewable and Sustainable Energy Reviews. 159(September 2021): 1–13. https://doi.org/10.1016/j.rser.2022.112222.
Yudiartono, Y., Windarta, J., & Adiarso, A. (2023). Sustainable Long-Term Energy Supply and Demand: The Gradual Transition to a New and Renewable Energy System in Indonesia by 2050. International Journal of Renewable Energy Development. 12(2): 419–429. https://doi.org/10.14710/ijred.2023. 50361.
Zhao, Y., Bourgougnon, N., Lanoisellé, J. L., & Lendormi, T. (2022). Biofuel Production from Seaweeds: A Comprehensive Review. Energies. 15(24):1–34. https://doi.org/10.3390/en 15249395.