Pigmen aktinomiset: potensi dan pemanfaatannya di berbagai bidang
Actinomycete pigments: potential and applications across various fields
This Work is licensed under: Creative Commons Attribution-ShareAlike 4.0 International License
Abstract
Synthetic pigments are increasingly scrutinized due to concerns over toxicity, bioaccumulation, and environmental pollution, which has intensified global interest in natural pigments as safer and more environmentally responsible alternatives. Among microbial producers, actinomycetes stand out as a highly promising source because they are capable of synthesizing a wide spectrum of pigments, including melanin, prodigiosin, carotenoids, actinorhodin, and other chromogenic metabolites that function not only as coloring agents but also exhibit valuable biological activities such as antimicrobial, antioxidant, photoprotective, and anticancer effects. These multifunctional properties expand their relevance across numerous fields, including food, cosmetics, textiles, pharmaceuticals, agriculture, and biotechnology. Despite this broad potential, large-scale utilization of actinomycete-derived pigments remains constrained by challenges such as low or inconsistent yields, variability in pigment quality, relatively high production costs, and the need for complex downstream purification. Advances in fermentation optimization, the development of cost-effective substrates, and the application of metabolic and genetic engineering are helping to address these limitations and improve production feasibility. In this context, the present review aims to provide an overview of pigment types produced by actinomycetes, highlight their functional and industrial applications, and discuss the key obstacles and future prospects for their development as competitive natural colorants.
References
Aqlinia, M., Astuti, R. I., Prastya, M. E., & Wahyudi, A. T. (2025). Antioxidant potential of melanin pigment from marine sponge-associated actinomycete Micromonospora sp. Journal of Applied Pharmaceutical Science, 15(4), 212-224.
Asah-Asante, R., Tang, L., Gong, X., Fan, S., Yan, C., Asante, J. O., & Zeng, Q. (2025). Exploring pigment-producing Streptomyces as an alternative source to synthetic pigments: diversity, biosynthesis, and biotechnological applications. A review. World Journal of Microbiology and Biotechnology, 41(7), 211.
Asril, M., Astuti, R. I., Rusmana, I., & Wahyudi, A. T. (2025). Photoprotection and antioxidant activity of eumelanin from Streptomyces lasalocidi NTB 42 and its photoprotective effects on Schizosaccha-romyces pombe ARC039. Journal of Photochemistry and Photobiology B: Bi-ology, 262, 113085.
Bawazir, A.M.A., Shivanna, G.B., & Shantaram, M. (2018). Impact of different media for growth and production of different soluble pigments in actinomyceted from soils Hadhramout, Yemen. Ejbps, 5(7), 615-619.
Celedón, R. S., & Díaz, L. B. (2021). Natural pigments of bacterial origin and their possible biomedical applications. Microorganisms, 9(4), 739.
Cheema, M. T., Ponomareva, L. V., Liu, T., Voss, S. R., Thorson, J. S., Shaaban, K. A., & Sajid, I. (2021). Taxonomic and metabolomics profiling of actinobacteria strains from Himalayan collection sites in Pakistan. Current microbiology, 78(8), 3044-3057.
Darshan, V., & Manonmani, H.K. (2015). J Food Sci Technol.
Díez, B. H., Torres, C. A., & Gaudêncio, S. P. (2025). Actinomycete-derived pigments: A path toward sustainable industrial colorants. Marine Drugs, 23(1), 39.
El-Naggar, N. E. A., & El-Ewasy, S. M. (2017). Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific reports, 7(1), 1-19.
El‑Zawawy, N.A., Kenawy, E., Ahmed, S., & El‑Sapagh, S. (2024). Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS‑3 with its anticancer, antimicrobial, and radioprotective properties. Microbial Cell Factories, 23(23).
Ellison, S. L. (2016). Carotenoids: Physiology. Encyclopedia of Food and Health, edited by Caballero B, Finglas P M, Toldra F. Elsevier, Amsterdam.
Fernandes, C. J., Doddavarapu, B., Harry, A., Dilip, S. P. S., & Ravi, L. (2021). Isolation and identification of pigment producing actinomycete Saccharomonospora azurea SJCJABS01. Biomedical and Pharmacology Journal, 14(4), 2261-2269.
Girma, D., Feyisa, A., Chaluma, E., Mulu, D., Geta, S., & Tafesse, M. (2025). Insights into the antibacterial, antioxidant, and fabric colorant applications by pigment-producing actinomycetes from Sof-Umer cave rocks and sediments. BMC microbiology, 25(1), 236.
Ibrahim, W. M., Olama, Z. A., Abou-Elela, G. M., Ramadan, H. S., Hegazy, G. E., & El Badan, D. E. S. (2023). Exploring the antimicrobial, antiviral, antioxidant, and antitumor potentials of marine Streptomyces tunisiensis W4MT573222 pigment isolated from Abu-Qir sediments, Egypt. Microbial Cell Factories, 22(1), 94.
Kamarudheen, N., Naushad, T., & Rao, K.V.B. (2019). Biosynthesis, characterization and antagonistic applications of extracellular melanin pigment from marine Nocardiopsis sp. Indian Journal of Pharmaceutical Education and Research, 53(2).
Kazi, Z., Hungund, B. S., Yaradoddi, J. S., Banapurmath, N. R., Yusuf, A. A., Kishore, K. L., Soudagar, M. E. M., Khan, T. M. Y., Elfasakhany, A., & Buyondo, K. A. (2022). Production, characterization, and antimicrobial activity of pigment from Streptomyces species. Journal of Nanomaterials, 2022(1), 3962301.
Kraseasintra, O., Sensupa, S., Mahanil, K., Yoosathaporn, S., Pekkoh, J., Srinuanpan, S., Pathom-aree, W., & Pumas, C. (2023). Optimization of melanin production by Streptomyces antibioticus NRRL B-1701 using Arthrospira (Spirulina) platensis residues hydrolysates as low-cost L-tyrosine supplement. BioTech, 12(1), 24.
Le, T. N., Tran, N. T., Pham, V. N., Van-Thi, N. D., & Tran, H. T. (2024). Anti-ultraviolet, antibacterial, and biofilm eradication activities against Cutibacterium acnes of melanins and melanin derivatives from Daedaleopsis tricolor and Fomes fomentarius. Frontiers in Microbiology, 14, 1305778.
Maoka, T. (2019). Carotenoids as natural functional pigments. Journal of Natural Medicines.
MESRIAN, D. K., PURWANINGTYAS, W. E., ASTUTI, R. I., HASAN, A. E. Z., & Wahyudi, A. T. (2021). Methanol pigment extracts derived from two marine actinomycetes exhibit antibacterial and antioxidant activities. Biodiversitas Journal of Biological Diversity, 22(10).
Mnif. S., Jardak, M., Bouizgarne, B., & Aifa, S. (2022). Prodigiosin from Serratia: synthesis and potential applications. Asian Pacific Journal of Tropical Biomedicine; 12(6): 233-242.
Mohammadi, A. M., Ahangari, H., Mousazadeh, S., Hosseini, S. M., & Dufossé, L. (2022). Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess and biosystems engineering, 45(1), 1-12.
Nuanjohn, T., Suphrom, N., Nakaew, N., Pathom-Aree, W., Pensupa, N., Siangsuepchart, A., Dell, B., & Jumpathong, J. (2023). Actinomycins from soil-inhabiting Streptomyces as sources of antibacterial pigments for silk dyeing. Molecules, 28(16), 5949.
Numan, M., Bashir, S., Mumtaz, R., Tayyab, S., Rehman, N. U., Khan, A. L., Shinwari, Z. K., & Al-Harrasi, A. (2018). Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech, 8(4), 207.
Parmar, R. S., & Singh, C. (2018). A comprehensive study of eco-friendly natural pigment and its applications. Biochemistry and Biophysics reports, 13, 22-26.
Pattapulavar, V., Ramanujam, S., Sekaran, M., Chandrasekaran, R., Panchal, S., & Christopher, J.G. (2025). Biosynthetic pathway of psi, psi-carotene from Streptomyces sp. VITGV38 (MCC 4869). Frontiers in Microbiology.
Pavan, M.E., López, N.I., & Pettinari, M.J. (2019). Melanin biosynthesis in bacteria, regulation and production perspectives. Applied Microbiology and Biotechnology.
Purwaningtyas W. E. 2022. The Potencies of Streptomyces-derived Biopigment as Antioxidant, Antibacterial and Anticancer Agents. [tesis]. Bogor: Institut Pertanian Bogor.
Ramesh, C., Vinithkumar, N.V., Kirubagaran, R., Venil, C.K., & Dufossé, L. (2020). Applications of prodigiosin extracted from marine red pigmented bacteria Zooshikella sp. and actinomycete Streptomyces sp. Microorganisms, 8(556).
Rao, N. M. P., Xiao, M., & Li, W. J. (2017). Fungal and bacterial pigments: secondary metabolites with wide applications. Frontiers in microbiology, 8, 1113.
Sajjad, W., Ahmad, S., Aziz, I, Azam, S.S., Hasan, F., & Shah, A.A. (2018). Molecular Biology Reports.
Sandmann, G. (2021). Carotenoids: biosynthetic and biofunctional approaches, advances in experimental medicine and biology. Advances in Experimental Medicine and Biology. 1261.
Sarmiento-Tovar, A.A, Silva, L., Sánchez-Suárez, J., & Diaz, L. (2022). Streptomyces-derived bioactive pigments: ecofriendly source of bioactive compounds. Coatings, 12(1858).
Selim, M.S.M., Abdelhamid, S.A., & Mohamed, S.S. (2021). Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology, 19(72).
Shaaban, M.T., El-Sabbagh, S.M.M., & Alam, A. (2013). Studies on an Actinomycete Producing a Melanin Pigment Inhibiting Aflatoxin B1 Production by Aspergillus flavus. Life Science Journal, 10(1).
Sharma, D., Kaur, T., Kaur, V., & Manhas, R. K. (2025). A Sustainable Alternative: Violet Pigment from Streptomyces DP6 for Textile Applications. Journal of Advances in Microbiology, 25(5), 146-159.
Sheefaa, M.I., & Sivaperumal, P. (2022). Antioxidant activities from melanin pigment produced by marine actinobacterium of Streptomyces species. Journal of Advanced Pharmaceutical Technology & Research, 13.
Sholekha, S., Budiarti, S., Hasan, A. E. Z., Krishanti, N. P. R. A., & Wahyudi, A. T. (2024). Antimicrobial potential of an actinomycete Gordonia terrae JSN1. 9-derived orange pigment extract. HAYATI Journal of Biosciences, 31(1), 161-170.
Singh, R., Mittal, C., & Gunjal, A. (2025). Application of Melanin Pigment from Actinobacteria in Textile Industry. Nepal Journal of Environmental Science, 13(1), 71-77.
Sowani, H., Mohiteb, P., Damalec, S., Kulkarnia, M., & Zinjardeb, S. (2016). Carotenoid stabilized gold and silver nanoparticles derived from the actinomycete Gordonia amicalis HS-11 as effective free radical scavengers. Enzyme and Microbial Technology, 95, 164-173.
Stankovic, N., Senerovic, L., Ilic-Tomic, T., Vasiljevic, B., & Nikodinovic-Runic. (2014). Properties and applications of undecylprodigiosin and other bacterial prodigiosins. J. Appl Microbiol Biotechnol, 98, 3841–3858.
Tarangini, K., & Mishra, S. (2014). Production of melanin by soil microbial isolate on fruit waste extract: two step optimization of key parameters. Biotechnology Reports, 4 ,139–146.
Toledo, A.V., Franco, M.E.E, Lopez, S.M.Y, MaríIné, T., Saparrat, M.C.N., Balatti, P.A, (2017). Melanins in fungi: Types, localization and putative biological roles. Physiological and Molecular Plant Pathology.
Tran-Ly, A. N., Reyes, C., Schwarze, F. W., & Ribera, J. (2020). Microbial production of melanin and its various applications. World Journal of Microbiology and Biotechnology, 36(11), 170.
Urtgam, S., Thananoppakun, K., Puengtang, C., Sumpradit, T., Thuankul, B., & Thurnkul, N. (2024). Antimicrobial Activities and Painting Application of Pigmented-Producing Actinobacteria Isolated from Rhizospheric Soils of Mosses (Taxithelium Nepalense (Schwägr.) Broth. and Barbula Indica (Hook.) Spreng.). HAYATI Journal of Biosciences, 31(4), 652-662.
Venil, C. K., Zakaria, Z. A., & Ahmad, W. A. (2013). Bacterial pigments and their applications. Process Biochemistry, 48(7), 1065-1079.
Waters, M., & Tadi, P. (2020). Streptomycin. FL: StatPearls
Yuan, H., Zhang, J., Nageswaran, D., & Li, L. (2015). Carotenoid metabolism and regulation in horticultural crops. Horticulture Research. 2, 15036,
Zhou, M., Han, M., & Qing, J., Yu, M. (2024). Characterization, components, and chemical structure of a novel natural pigments derived from Streptomyces tauricus. Eur Food Res Technol 250, 2781–2795.







